FLORA Y VEGETACIÓN DE LA SIERRA DE SULTEPEC, ESTADO DE MÉXICO¹

Ma. Magdalena Torres-Zúniga*

J. Daniel Tejero-Díez*

RESUMEN

Se realizó el estudio de la flora y vegetación del área comprendida entre los 1500 y 2800 m de altitud en la sierra de Sultepec, que se localiza a 150 km aproximadamente, al suroeste de la Ciudad de México. La lista florística está basada en la determinación de 1452 registros, colectados entre junio de 1984 y mayo de 1987. Comprende 107 familias, 327 géneros y 507 especies. Las familias mejor representadas son: Asteraceae (48 especies), Polypodiaceae (s. l.) (36 especies), Fabaceae (32 especies) y Lamiaceae (23 especies). Se reconocieron y se describieron brevemente los siguientes tipos de vegetación: bosque mesófilo de montaña, bosque de *Quercus*, bosque de *Pinus-Quercus* y bosque tropical caducifolio.

Palabras clave: vegetación, flora, Estado de México, sierra Sultepec.

ABSTRACT

A study was made of the flora and vegetation in the area comprised between 1500 and 2800 meters above sea level in the Sultepec mountains, which are located at about 150 km southwest of Mexico City. The floristic list is based on 1452 entries collected between June 1984 and May 1987. It comprises 107 families, 327 genera and 507 species. The best represented families are Asteraceae (48 species), Polypodiaceae (s. l.) (36 species), Fabaceae (32 species) and Lamiaceae

Versión modificada del trabajo de tesis que para obtener el título de bióloga presentó la primera autora en 1991 en la Escuela Nacional de Estudios Profesionales Iztacala, UNAM.

^{*}Carrera de Biología, Escuela Nacional de Estudios Profesionales, Iztacala, UNAM, Apartado Postal 314, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México. México.

(23 species). The following vegetation types were recognized and briefly described: cloud forest, oak forest, pine-oak forest, and tropical deciduous forest.

Key words: vegetation, flora, State of Mexico, sierra Sultepec.

INTRODUCCIÓN

Los estudios florísticos permiten conocer los recursos vegetales regionales para su mejor aprovechamiento y/o conservación, sobre todo si se toma en cuenta que la destrucción de los bosques ha alcanzado magnitudes importantes en nuestro país en las últimas décadas, amenazando con la desaparición de vastas extensiones, de las cuales nunca se podrá conocer su potencial biológico (Toledo, 1988).

Una de las actividades encaminadas a contribuir al conocimiento de la flora de México es el proyecto Vegetación y Flora del Estado de México comprendido en el Programa de Investigación en Licenciatura de la carrera de biología de la Escuela Nacional de Estudios Profesionales Iztacala, UNAM, que se realiza desde 1983.

Se seleccionó el municipio de Sultepec, en el sureste del Estado de México, para su estudio florístico, debido a su estratégica posición geográfica y abrupta fisiografía que favorece una mezcla de elementos vegetales presentes tanto en la cuenca del río Balsas como en el Eje Volcánico Transversal.

Las colectas efectuadas en la zona de estudio hasta antes del inicio del presente trabajo se han realizado en forma esporádica. En la época de la colonia sobresalen las visitas que Sessé, junto con Castillo y Cerda, llevaron a cabo en el año de 1792 a la región de Sultepec, como parte del ambicioso proyecto «Flora de México» (McVaugh, 1977).

De importancia botánica fue la llegada a México de Alexander von Humboldt y Aimé Bonpland en 1804, como parte de las exploraciones que el gobierno alemán organizó, con permiso de España, a las colonias americanas. En México colectaron alrededor de 956 plantas, algunas de las cuales probablemente son de la región del Nevado de Toluca-Sultepec que visitaron durante su estancia (Alessio-Robles, 1941).

Otros extranjeros visitaron la región del Nevado de Toluca y Sultepec promovidos por el impacto de los trabajos de Humboldt; entre los más importantes cabe destacar a Karwinski que colecta ejemplares en el área de estudio en 1827 (McVaugh, 1980). Entre 1931 y 1935, G. B. Hinton recorrió el distrito de Temascaltepec colectando ejemplares que enviaba a diferentes instituciones extranjeras para su estudio (Hinton y Rzedowski, 1975).

Miranda (1947) describió los tipos de vegetación más importantes de la cuenca del río Balsas; entre ellos se mencionan, para Sultepec, el bosque de encinos y el bosque mesófilo de montaña. En la década de los 50 se organizó la Comisión Botánica Exploradora del Estado de México, donde Martínez y Matuda (1979) publicaron fascículos que versan sobre las familias de plantas del Estado de México;

de éstas se encontraron citadas 48 especies vistas o colectadas en el área de estudio. En el *Inventario forestal del Estado de México y D.F.* (Secretaría de Agricultura y Ganadería, 1974) se expone que la región de Sultepec está compuesta por bosques de aprovechamiento específico, ya que sus elementos forestales son de baja producción volumétrica de madera, compuestos principalmente de encinos y otras latifoliadas, con pinares solamente entre los 2500 y 3000 m s.n.m. Posteriormente, Rzedowski (1975) realizó una serie de colectas en el área de estudio, a partir de las cuales publicó especies nuevas de interés ornamental, tales como *Populus simaroa* y *Castilleja venusta*.

Dado que hasta el momento no hay ningún trabajo florístico de la región, el objetivo básico de este estudio es investigar y describir los tipos de vegetación con la finalidad de contribuir al conocimiento de los recursos naturales del Estado de México y, por consiguiente, del país, requisito indispensable para su mejor entendimiento y conservación.

ÁREA DE ESTUDIO

Localización política y geográfica. La sierra de Sultepec es un cordón montañoso estrecho que corre de noreste a suroeste, localizada entre los 18º 35' 06" y 18º 38' N y 99º 58' y 100º 04' W (entre los poblados de Sultepec y La Goleta), al suroeste del Estado de México. El área de estudio se ubica al suroeste del poblado del mismo nombre y abarca una superficie de 200 km² aproximadamente.

La vía de comunicación con Sultepec a partir de la ciudad de Toluca es la carretera estatal 140 a Temascaltepec; a la altura de Texcaltitlán un ramal suroeste llega hasta el poblado de Sultepec, donde se bifurca en dos terracerías; una tiene dirección sur y baja la sierra llegando hasta el poblado de San Miguel Totomaloya; otra tiene dirección suroeste y atraviesa la sierra hasta el poblado de Amatepec (Fig. 1).

Fisiografia. El Estado de México está inmerso en dos grandes provincias fisiográficas: la del Eje Volcánico Transversal, que ocupa la mayor parte de la superficie centro y norte estatal y la depresión del río Balsas en las porciones más australes de la entidad. La sierra de Sultepec se encuentra en la zona de contacto entre las dos anteriores provincias, formando parte de la subcuenca del río Cutzamala.

Por la posición geográfica anterior, el relieve del área de estudio es sumamente agreste; al suroeste (carretera Sultepec-La Goleta) se encuentra la sierra de Sultepec cuya altura promedio es de 2200 m s.n.m. con algunos picos que llegan a los 2800 m s.n.m. cerca del poblado de Sultepec; al sur, bordeando la sierra, se encuentra la cuenca del río Sultepec, el cual en su lado oeste está limitado por numerosos acantilados de paredes verticales, mientras que el lado contrario bordea lomas; las alturas en estos últimos casos oscilan entre los 1500 y 1850 m snm.

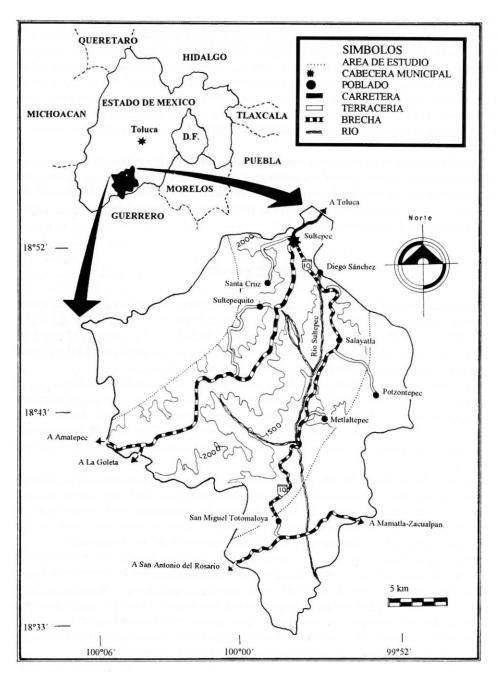


Fig.1. Área de estudio.

Geología. De acuerdo con Trigos (1981), las rocas más antiguas de esta provincia son las metamórficas del Triásico, que están clasificadas como gneis, esquistos, filitas y pizarras cuyo conjunto forma un complejo metamórfico. Este tipo de rocas cubre una gran extensión de la porción sur baja de la sierra. De este período, Triásico, afloran también las rocas sedimentarias continentales como areniscas y conglomerados que pueden yacer sobre la roca metamórfica o sobre la roca ígnea extrusiva intermedia.

Existen también, cerca del poblado de Sultepec, áreas con la presencia de rocas del Cretácico, del tipo sedimentario clasificadas como calizas. Estas rocas generalmente están cubiertas discordantemente por los afloramientos de rocas ígneas tanto extrusivas como intermedias, ácidas y básicas, en algunas de las partes altas de la sierra.

Edafología. De acuerdo con la Síntesis geográfica del Estado de México (Secretaría de Programación y Presupuesto, 1981) y la carta edafológica de Ixtapan de la Sal (E-14, A-57 escala 1:50,000. CETENAL, 1980) en la zona existen suelos de tipo: cambisol, regosol, fluvisol y litosol. Los suelos predominantes a lo largo de la sierra son cambisoles que llegan a ocupar hasta 50% del terreno; están asociados a bosque mesófilo de montaña y Quercus-Pinus. También se hallan cambisoles combinados con regosoles, generalmente asociados a bosques de Quercus. Los fluvisoles se hallan en las vegas de los ríos y sitios planos, son productos del acarreo de diferentes materiales físicos; se encuentran asociaciones mixtas, como Quercus con vegetación tropical, y comunidades como el bosque de galería y el bosque tropical caducifolio. Finalmente, los litosoles están formados por afloramientos rocosos de basalto y esquistos en diferentes partes de la Sierra; en ellos se desarrollan comunidades vegetales como los bosques de Quercus y bosques de Quercus con elementos de bosque mesófilo de montaña.

Clima. La orografía abrupta es un factor muy importante que provoca la existencia de una variación climática dentro de la cuenca del río Balsas, ya que influye tanto en la temperatura como en la precipitación. En esta provincia geográfica, los vientos que tienen mayor influencia son los que se originan en la Zona Intertropical de Convergencia en el Océano Pacífico, los cuales en verano se desplazan al norte a la altura de Guerrero y Michoacán. Estos vientos, una vez librada la Sierra Madre del Sur, tienen un papel fundamental en la precipitación regional, ya que las masas de aire caldeadas en la cuenca del río Balsas, al ascender por las laderas de la sierra de Sultepec, se enfrían y dan lugar a un gradiente pluviométrico altitudinal (Jáuregui y Vidal, 1981).

Dentro de la zona de estudio no existen estaciones meteorológicas con suficiente tiempo de observación; por lo tanto, los datos que a continuación se presentan y discuten se obtuvieron de registros correspondientes a poblados cercanos circunscritos a la cuenca del río Balsas en el Estado de México (Presa Colorines a 1680 m snm, Presa Valle de Bravo a 1847 m snm y Hacienda San Juan Guadalupe a 2445 m snm) (García, 1973). Los tres tipos de climas que predominan en el área de estudio son:

El (A)C(w"₁)(w)a(i')g, que se presenta entre 1500 y 1600 m snm, es el intermedio de los subhúmedos, caracterizado por una precipitación media anual alrededor de 1000 mm, cuya mayor incidencia de lluvias se registra en los meses de junio a octubre y de diciembre a mayo sólo ocurre menos del 5% del total; la temperatura media anual es de 19.2 °C

El (A)C(w_2)(w)b(i') g predomina entre 1600 y 2200 m snm, es el más húmedo de los subhúmedos. La precipitación media anual es de 1310 mm, mostrando una incidencia de lluvias entre los meses de junio a octubre y los más secos entre diciembre y febrero, la temperatura media anual es superior a 18.3 °C.

El clima templado $C(w_2)(w)$ big se presenta sobre 2200 m snm, es el más húmedo de los subhúmedos, con lluvias en verano que predominan de junio a septiembre y un porcentaje menor de 5% de lluvias invernales. La precipitación media anual es de 1000 mm y la temperatura media anual es 13.7 °C.

Hidrología. El occidente del Estado de México presenta dos regiones hidrológicas de suma importancia: la región Lerma-Chapala-Santiago y la región río Balsas. En esta segunda cuenca se inserta la zona de estudio.

El río mas importante que recoge el agua de los arroyos y avenidas de la sierra de Sultepec es el Sultepec; es de flujo continuo y corre hacia el SSW desde el poblado de Diego Sánchez y, al entrar a Guerrero, se dirige al oeste junto con la parte principal de la carretera Zacualpan-San Miguel Totomaloya-Nuevo Copaltepec; desemboca en la presa Vicente Guerrero, sistema tributario del río Alahuixtlán que es parte de la subcuenca del Cutzamala.

Vegetación. De acuerdo con la carta de uso del suelo de Ixtapan de la Sal (E-14, A-57 escala 1:50 000 CETENAL, 1980), en la zona de estudio existen los siguientes tipos de vegetación: a) bosque mesófilo de montaña, b) bosque mixto de *Pinus-Quercus*, c) bosque mixto de *Quercus* y tropical caducifolio.

Miranda (1947) registra para esta parte del Estado de México la presencia del bosque de encino en laderas y declives con especies como Quercus affinis y Q. laurina. También están presentes en el área de Sultepec, el encinar de Quercus urbanii, el de Q. magnoliifolia, bosque mesófilo de montaña, bosque de Pinus montezumae, P. pseudostrobus, bosque de galería de Ficus, Salix, Alnus, entre otros.

MÉTODO

La zona de estudio la constituyen la sierra de Sultepec y la parte alta de la cuenca del río Sultepec, entre 1500 y 2800 m snm. Se recabó información fisiográfica y botánica concerniente al lugar y se procedió a la colecta de campo. Se realizaron 67 salidas dentro de un período comprendido del 8 de junio de 1984 al 23 de mayo de 1987, durante el cual se colectaron 1452 ejemplares. Las visitas se distribuyeron en diferentes puntos, tanto a lo largo de la sierra, como en la cuenca del río Sultepec de acuerdo con los cambios de las asociaciones vegetales. En estas visitas se efectuaron colectas intensivas de ejemplares vegetales, de los cuales se registraron los siguientes

datos: fecha, lugar del municipio, tipo de vegetación de acuerdo con el criterio de Rzedowski (1978); altura (msnm) con altímetro; forma biológica según Raunkiaer, modificada parcialmente por Mueller-Dombois y Ellenberg (1974) y abundancia relativa bajo el siguiente criterio: escasa (0-25%), regular (26%-50%), abundante (56%-75%) y muy abundante (76%-100%) según el número de individuos de cada especie. El material colectado se prensó y secó; en el laboratorio se determinó por medio de claves de floras regionales y monografías disponibles y algunos casos fueron revisados por especialistas. Todos los ejemplares determinados fueron comparados para verificar su nombre en el herbario de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB) y en el Herbario Nacional de la Universidad Nacional Autónoma de México (MEXU).

Finalmente, los ejemplares fueron entregados al herbario de la Escuela Nacional de Estudios Profesionales Iztacala de la Universidad Nacional Autónoma de México (IZIA). Las especies en cuestión se ordenaron alfabéticamente en un listado florístico (Apéndice 1).

RESULTADOS Y DISCUSIÓN

Flora

Del total de 1452 ejemplares revisados se registraron 507 especies y 328 géneros en 107 familias (5 familias de Pteridophyta, 2 de Pinophyta y 100 de Magnoliophyta). De éstas, las mejor representadas son Asteraceae, Polypodiaceae (sensu lato) y Fabaceae, las cuales componen el 22.49% de las especies encontradas en Sultepec (Cuadro 1 y Fig. 2).

Cuadro 1. Familias mejor representadas dentro del municipio de Sultepec

Familia	Número de especies	% del total
Asteraceae	48	9.47
Polypodiaceae (s. l.)	36	7.10
Fabaceae	30	5.92
Lamiaceae	23	4.53
Solanaceae	19	3.75
Orchidaceae	16	3.15
Poaceae	15	2.96
Bromeliaceae	14	2.76
Rubiaceae	14	2.76
Fagaceae	12	2.37
Liliaceae	11	2.17
Scrophulariaceae	11	2.17
Totales	249	49.11
Otras familias	258	50.89

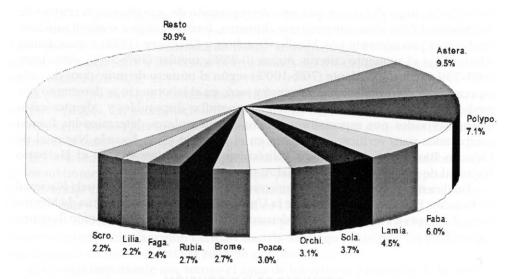


Fig.2. Familias mejor representadas en la sierra de Sultepec, Estado de México.

La representación porcentual de asteráceas y fabáceas aparentemente es normal en las montañas semicálidas subhúmedas de México (Rzedowski, 1991). Sin embargo, llama la atención la alta proporción de helechos; este número sin duda es debido a la elevada humedad y cantidad de sitios resguardados que propician el establecimiento y reproducción de estos organismos.

Podemos notar la elevada riqueza florística de la sierra de Sultepec (Cuadro 2), que es de las más altas que hay en las distintas sierras que se encuentran al centro del Eje Volcánico Transversal y la cuenca del río Balsas; probablemente lo anterior es debido a la elevada heterogeneidad del ambiente físico y sus cambios abruptos que producen traslapamientos muy pronunciados de los tipos de vegetación.

Cuadro 2. Cuadro comparativo de riqueza florística de tres sierras diferentes versus Sultepec

Localidad	$\rm km^2$	Núm. de especies	Altitud	Referencia
Mesa basáltica de Holotepec	114	451	2300-3070	Miranda y González, 1993
Sierra de Zacualpan	120	498	1900-2700	Fragoso Ramírez, 1990
Sierra de Tejupilco	720	629	600-2100	Guízar Nolazco, 1983
Sierra de Sultepec	200	507	1500-2800	Presente estudio

En el cuadro 3 se puede notar que la forma de vida hemigeófito es la mejor representada, aspecto normal para cualquier sitio montañoso con una temporada de sequías bien establecida. Sin embargo, es importante mencionar la sobrerrepresentación del grupo de los fanerófitos escaposos (árboles) y epífitas, los

cuales son superiores a otros sitios templados subhúmedos, como en Cerro Gordo, Teotihuacán (Castilla y Tejero, 1987). Esta presencia alta de árboles y epífitas se debe a la cercanía y coexistencia del ambiente tropical con buen aporte de humedad, rasgo que distingue las zonas templado-tropicales de las vertientes costeras, de las templado-áridas del altiplano mexicano.

Cuadro 3. Formas de vida y porcentaje de las especies registradas en el municipio de Sultepec.

Formas de vida	Número de especies	Porcentaje
Fanerófito escaposo (Ar)	74	13.70
Fanerófito cespitoso (Ato)	72	13.33
Caméfito (C)	84	15.56
Hemigeófito (Hc)	156	28.90
Geófito (G)	51	9.44
Terófitos (T)	44	8.15
Hidrófito (Hy)	10	1.85
Lianas (L)	7	1.29
Parásito (Pa)	6	1.11
Epífito (Ef)	36	6.67
TOTAL	540	100.00

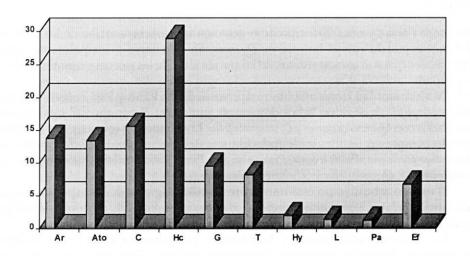


Fig. 3. Porcentajes de las formas de vida que se registraron en la Sierra de Sultepec, Estado de México (base porcentual de 540 registros).

Vegetación

Bosque mesófilo de montaña. El concepto de bosque mesófilo más indicado para Sultepec es el de Miranda (1947), que concuerda ampliamente en cuanto a su ubicación geográfica y fisiográfica y en su composición florística. Se presenta en forma de manchones discontinuos en las cañadas y arroyos en altitudes que varían desde los 1900 a los 2700 m snm, se caracteriza por presentar elementos estructurales arbóreos como Alnus acuminata var. arguta, A. jorullensis var. jorullensis, Arbutus xalapensis, Carpinus caroliniana, Cleyera mexicana, Clethra mexicana, Cornus disciflora, Dendropanax arboreus, Fraxinus uhdei, Garrya laurifolia, Meliosma dentata, Miconia glaberrima, Oreopanax xalapensis, Pinus leiophylla, Quercus castanea, Q. laurina, Styrax argenteus var. ramirezii y Ternstroemia pringlei.

El estrato arbustivo está representado por Buddleia parviflora, Eupatoriun petiolare,

Fuchsia microphylla, Rumfordia floribunda y Senecio barba-johannis.

En el estrato subarbustivo y herbáceo se observó a Aster moranensis, Baccharis heterophylla, Bidens ostruthioides, Crotalaria longirostrata, Cunila pycnantha, Dahlia coccinea, Salvia concolor y Salvia mexicana.

Las epífitas mejor representadas son Epidendrum gladiatum, Cymbiglossum cervantesii, Oncidium karwinskii, Peperomia galioides, Tillandsia prodigiosa, T. hintoniana. Las trepadoras más comunes, Smilax sp., Passiflora mollissima, Clematis dioica y Passiflora exsudans.

Bosque de Pinus-Quercus. Este tipo de vegetación se encuentra arriba de los 2400 m s.n.m.; se mezcla con el bosque de Quercus. Se distribuye principalmente sobre cambisoles que son característicos de las partes altas de las sierras y montañas de la localidad.

Esta comunidad tiene una altura aproximada de 25 m y está constituida por Pinus leiophylla, que es un árbol dominante junto con P. pringlei y P. montezumae, asociados con Quercus castanea y Q. magnoliifolia. Los elementos estructurales arbóreos que lo componen en menor abundancia son Arbutus xalapensis, Clethra mexicana, Leucothoe mexicana, Pinus teocote, Pinus pringlei, Pinus pseudostrobus, Quercus affinis, Q. conglomerata, Q. crassifolia y Q. macrophylla.

El estrato arbustivo no está muy representado. Algunas de las especies de este estratro son: Anisacanthus quadrifidus, Baccharis conferta, B. salicifolia, Buddleja

parviflora, Verbesina angustifolia y Vaccinium leucanthum.

En el estrato subarbustivo y herbáceo se presentan especies como Asclepias angustifolia, Begonia cristobalensis, Desmodium grahamii, Dyschoriste ovata, Erigeron karwinskianus, Geranium lilacinum, Gomphrena nitida, Ipomoea coccinea, Melampodium perfoliatum y Stevia elatior.

Dentro de las actividades humanas que se pueden apreciar en este tipo de vegetación está la explotación de madera para la obtención de leña y productos

secundarios que satisfacen las necesidades inmediatas del medio rural.

Bosque de Quercus. Las asociaciones de Quercus en el municipio de Sultepec se localizan entre los 1600 y los 2400 m snm en cerros, laderas, cañadas y pendientes sobre regosoles y cambisoles, en climas que van de semicálido a templado, ambos con lluvias en verano.

En general se caracteriza como una comunidad arbórea que oscila entre siete y nueve metros. Se manifesta una dominancia de Quercus magnoliifolia o Q. urbanii. Estas asociaciones aparentemente son propias de los encinares cercanos a los climas tropicales en la cuenca del Balsas y vertiente del Pacífico. En el Estado de México han sido descritas precisamente por Miranda (1947), Guízar Nolazco (1983) y Fragoso (1990). Los tipos de asociación de encino que se presentan en el área de estudio son: a) la de Quercus magnoliifolia, con Q. castanea, Q. laurina, Q. platyphylla que se localiza en las laderas húmedas y partes altas de cañadas. Se caracteriza por un estrato arbustivo de Calliandra anomala, Eupatorium petiolare y Cestrum fulvescens y en el estrato herbáceo por Dahlia coccinea, Digitaria filiformis, Muhlenbergia montana y Physalis sulphurea, y b) la de Quercus urbanii. Se presenta en lugares secos y perturbados con un tipo de suelo regosol+cambisol. Presenta un estrato arbóreo abierto que admite a Arbutus xalapensis. En el estrato arbustivo están Verbesina angustifolia y Cestrum fulvescens y entre las herbáceas hay gran cantidad de pastos amacollados. Las epífitas como Tillandsia dugesii y T. ignesiae son muy ocasionales.

Bosque tropical caducifolio. Este tipo de vegetación ocupa una amplia extensión en el SW del Estado de México, desde los 500 hasta 1600 m snm; en el municipio de Sultepec se muestreó en altitudes que van de 1500 a 1600 m snm a lo largo de la cuenca baja del río Sultepec. En términos generales corresponde a lo que Miranda (1974) denominó monte mojino (cuajiotal). Los suelos que caracterizan a este tipo de vegetación corresponden a los regosoles éutricos, los que se caracterizan por ser de tipo somero, delgados y con presencia de roca aflorante. Las localidades típicas de este tipo de vegetación en el área de estudio son el poblado de Salayatla y San Miguel Totomaloya.

En el estrato arbóreo de esta comunidad se observan las siguientes especies: Acacia farnesiana, Annona cherimola, A. diversifolia, Bursera bipinnata, B. fagaroides, B. longipes, Erythrina lanata, Eysenhardtia polystachya, Guazuma ulmifolia, Tecoma stans, Xylosma flexuosum y X. intermedium.

El estrato arbustivo se presenta en forma densa y bien distribuido con especies dominantes como Abutilon ellipticum, Crescentia alata, Celastrus pringlei, Eriosema grandiflorum y Lantana camara

El estrato subarbustivo y herbáceo presenta algunas especies sarmentosas y trepadoras como Dioscorea remotiflora, Vitis tiliifolia, Cuscuta corymbosa, además de otros elementos como: Cyclantera longaei, Heliocerus speciosus, Gonolobus uniflorus, Macromeria pringlei, Matelea quirosii, Mirabilis jalapa, Sedum minimun, Tigridia multiflora, Tillandsia chaetophylla y T. dasyliriifolia.

En lo que respecta a las actividades productivas, este tipo de vegetación resulta ser el más perturbado, debido al frecuente cambio del uso del suelo. La vegetación original es desplazada para la apertura de terrenos de cultivo y ganaderos.

AGRADECIMIENTOS

Agradecemos a las siguientes personas por la amabilidad de revisar algunos taxa de su especialidad: Dr. T. P. Ramamoorthy, Dr. Mario Sousa, M. en C. Oswaldo Téllez, M. en C. Silvia Romero Rangel, Biól. Ignacio Aguirre, Biól. René Moreno, M. en C. Nelly Diego. Al Biól. Jesús Medina Soto por su participación en la colecta de campo. Especialmente al Dr. Fernando Chiang Cabrera, editor de los *Anales del Instituto de Biología*, por sus observaciones que permitieron elevar la calidad del artículo. A los dos revisores anónimos de la revista por sus sugerencias.

LITERATURA CITADA

- ALESSIO-ROBLES, V. (cd). 1941. Alejandro Humboldt, Ensayo político sobre el reino de Nueva España. Sexta edición. Castellana, Madrid. Tomo 3, pp.1-5.
- CASTILLA HERNÁNDEZ, M. y D. TEJERO DIEZ. 1987. Flora y vegetación de Cerro Gordo (próximo a San Juan Teotihuacán) y regiones aledañas, Valle de México, México. *Biolica* 12 (4): 231-255.
- CRONQUIST, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York. 1262 p.
- CHRISTENSEN, C. 1938. Filicinae. In: F. Verdoon (ed.) Manual of pteridology. Nijhoff, The Hague, pp. 522-550
- FRAGOSO RAMÍREZ, R. 1990. Estudio florístico en la parte alta de la sierra de Zacualpan, Estado de México. Tesis Escuela Nacional de Estudios Profesionales Iztacala, Universidad Nacional Autónoma de México, México. 80 p.
- GARCÍA, E. 1973. Modificaciones al sistema de clasificación climática de Koeppen (para adaptarlo a las condiciones de la República Mexicana). Instituto de Geografía, Universidad Nacional Autónoma de México, México. 264 p.
- GUÍZAR NOLAZCO, E. 1983. Estudio ecológico florístico de la vegetación del municipio de Tejupilco, Estado de México. Tesis Universidad Autónoma Chapingo, Chapingo, Estado de México. 146 p.
- HINTON, J. y J. RZEIXWSKI. 1975. G.B. Hinton. Explorador botánico en el sudoeste de México. Anales Escuela Nacional de Ciencias Biológicas 21(1-4): 3-114.
- JÁUREGUI OSLO, E. y J. VIDAL. 1981. Aspectos de climatología del Estado de México. Boletin del Instituto de Geografia, Universidad Nacional Autónoma de México, 11: 21-54.
- MARTÍNEZ, M. y E. MATUDA. 1979. Flora del Estado de México. Edición facsimilar de los fascículos publicados de 1953 a 1972. Biblioteca Enciclopédica del Estado de México, Toluca. Tomos I, II y III.
- McVaugh, R. 1977. Botanical results of the Sessé & Mociño expeditions (1787-1803). Contribution from the University of Michigan Herbarium 3: 97-195.
- McVAUGH, R. 1980. Karwinski's itineraries in Mexico (1827-1832 & 1841-1843). Contribution from the University of Michigan Herbarium 14: 141-142.

- MIRANDA, F. 1947. Estudio sobre la vegetación de México. V. Rasgos de la vegetación en la cuenca del río Balsas. Revista de la Sociedad Mexicana de Historia Natural 8(1-4): 95-114.
- MIRANDA J., M. E. y M. A. GONZALEZ O. 1993. Estudio de la vegetación de la mesa basáltica de Holotepec, Distrito de Tenango del Valle, Estado de México. Tesis Escuela Nacional de Estudios Profesionales Iztacala, Universidad Nacional Autónoma de México, México. 73 p.
- MUELLER-DOMBOIS, D. y H. ELLENBERG. 1974. Aims and methods of vegetation ecology. Wiley & Sons, New York, pp. 139-176.
- RZEDOWSKI, J. 1975. Tres dicotiledóneas mexicanas nuevas de posible interés ornamental. Boletín de la Sociedad Botánica de México 35: 37-48.
- RZEDOWSKI, J. 1978. La vegetación de México. Limusa, México. 432 p.
- RZEDOWSKI, J. 1991. Diversidad y orígenes de la flora fanerogámica de México. *Acta Botánica Mexicana 14*: 3-21.
- SECRETARÍA DE AGRICULTURA Y GANADERÍA. 1974. Inventario forestal del Estado de México y D.F. Publicación 29. Secretaría Forestal y de la Fauna, Dirección General del Inventario Nacional Forestal, México.
- SECRETARÍA DE PROGRAMACIÓN Y PRESUPUESTO. 1981. Síntesis geográfica del Estado de México. Coordinación General de los Servicios Nacionales de Estadística, Geografía e Informática, México. 174 p.
- TOLEDO, L. 1988. La diversidad biológica de México. Ciencia y Desarrollo 81(14): 17-30.
- TRIGO SUZAN, G. 1981. Estudio petrológico de las vetas y roca encajonante del distrito minero de Sultepec, Estado de México. Tesis Facultad de Ingeniería, Universidad Nacional Autónoma de México, México.

Apéndice 1. Lista florística de la Sierra de Sultepec, Estado de México

La lista de especies está ordenada alfabéticamente por familias; los helechos de acuerdo con el sistema de Christensen (1938) y las plantas con flor con el de Cronquist (1981). En cada una de las especies se indica la forma de vida, el tipo de vegetación donde se colectó y la abundancia que presentó; datos que aparecen con las siguientes abreviaturas:

Tipos de vegetación	
Bosque mesófilo de montaña	Bmm
Bosque de Quercus	BQ
Bosque mixto de Pinus-Quercus	BP-Q
Bosque tropical caducifolio	Btc
Formas de vida	
Fanerófito escaposo (árbol)	Ar
Fanerófito cespitoso (arbusto mayor a 50 cm)	Ato
Caméfito (arbusto o herbácea de follaje perenne menor a 50 cm)	C
Hemicriptófitos (hierbas sufrutescentes de follaje caduco)	Hc
Geófito (hierbas bulbosas o rizomatosas de follaje caduco)	G
Terófito (hierbas con ciclo de vida anual)	T
Epífito (plantas con ciclo de vida sobre otra planta)	Ef
Liana (plantas leñosas sin soporte mecánico autónomo)	L
Hidrófito (plantas con ciclo de vida en sistemas acuáticos)	Hy
Cormófito (plantas semiautótrofas y heterotróficas; parásitas)	Pa
Abundancia	

1, escasa; 2, regular; 3, abundante; 4, muy abundante.

Todos los ejemplares se encuentran depositados en el herbario ITZA

	Forma	Tipos de vegetación/Abundanci				
		Bmm	BP-Q	BQ	Btc	
PTERIDOPHYTA						
EQUISETACEAE						
Equisetum hyemale var. affine (Engelm.)	G/Hy		2			
A.A.Eaton Torres Z. 840, Tejero 2318						
OPHIOGLOSSACEAE						
Botrychium virginianum (L.) Sw.	G		1			
Tejero 2506						
POLYPODIACEAE						
Adiantum andicola Liebm.	Hc		1	1		
Tejero 2025, 12312, 2313, 2510						
Adiantum concinnum Willd.	Hc				1	
Tejero 2666						
Adiantum poiretii Wikström	Hc		1			
Tejero 1993						

	Forma	Tipos d	e vegetac	ión/Abu	ndancia
		Bmm	BP-Q	BQ	Btc
Asplenium aethiopicum (Burm. f.) Bech Tejero 2514, 2680, Torres Z. 218	Ef	1			
Asplenium blepharophorum Bertol Tejero 2681	Hc	2			
Asplenium monanthes L. Tejero 2682	Hc	1			
Athyrium filix-femina (L.) Roth Tejero 2679	Hc	1			
Bommeria pedata (Sw.) Fourn. Tejero 1996	Нс	1			
Cheilanthes bonariensis (Willd.) Proctor Tejero 2518	Hc				1
Cheilanthes cuneata Link Tejero 2674	Нс	1			
Cheilanthes farinosa (Forssk.) Kaulf. Tejero 2428	Hc		1		
Cystopteris fragilis (L.) Bernh. Tejero 2026, 2513	Hc	1			
Denustaedtia distenta (Kuntze) Moore Tejero 2675	С	2			
Elaphoglossum erinaceum (Fée) Moore Tejero 2512, Torres Z. 126	Hc		1		
Elaphoglossum glaucum Moore Tejero 2683	Ef	1			
Elaphoglossum muelleri (Fourn.) C. Chr. Tejero 2511	Hc		1		
Elaphoglossum paleaceum (Hooker & Greville) Sledge Tejero 2676	Hc				1
Elaphoglossum petiolatum (Sw.) Urban Tejero 2311	Hc			1	
Notholaena galeottii Fée Tejero 2669	Hc				I
Pityrogramma tartarea (Cav.) Maxon Tejero 2309	Нс		1		
Polypodium adelphum Maxon	Ef	1			
Tejero 2499 Polypodium areolatum H. & B. ex Willd. Tejero 2508, Torres 7, 210	Ef	1			
Tejero 2508, Torres Z. 219 Polypodium furfuraceum Schlecht. & Cham. Tajaro 2517, 2524	Ef	1			1
Tejero 2517, 2524 Polypodium fuscopetiolatum A. R. Smith Tejero 2520	Ef				1

	Forma	Tipos d	le vegetac	ión/Abu	ndancia
		Bmm	BP-Q	BQ	Btc
Polypodium madrense J. Smith Tejero 2509	Ef	2	2		
Polypodium pellatum Cav. var. interjectum Weatl Tejero 2500	h. Ef	1			
Polypodium platylepis Mett. ex Kuhn Tejero 2678	Ef	1			
Polypodium polypodioides var. aciculare Weath Tejero s/n	. Ef/C				1
Polypodium rosei Maxon Tejero 2676, 2507, Torres Z. 204	Ef				1
Polypodium thyssanolepis A. Br. ex Kl. Tejero 2523	Ef/C				1
Polystichum distans Fourn. Tejero 2515	Нс				1
Thelypteris ovata R. St. John	G				1
Tejero 2670, Torres Z. 128 Thelypteris pilosa (Mart. & Gal.) Craw.	Hc	2			
Torres Z. 129 Thelypteris rudis (Kunze) Proctor	Нс				1
Tejero 2516 Woodsia mollis (Kaulf.) J. Smith	Hc/C	1			
Tejero 1995 Woodwardia spinulosa Mart. & Gal.	С	1			
Torres Z. 130 SELAGINELLACEAE					
Selaginella delicatissima Linden ex A. Br. Tejero 2024 3, Torres Z. 423	С			1	
Selaginella lineolata Mickel & Beitel Tejero 2672, Torres Z. 736	С				1
Selaginella pallescens (C. Presl) Spring Tejero 2319, Torres Z. 839	С		1		
Selaginella porphyrospora A. Br. Torres Z. 441	Т	1			
Selaginella rupincola Underw.	С			1	2
Tejero 2667 Selaginella sartorii Hieron. Tejero 2668, Torres Z. 739	С			1	
SCHIZAEACEAE Anemia karwinskiana (C. Presl) Prantl Tejero 2522	Нс		2	2	

Apéndice 1, continúa	Forma	Tipos	le vegetac	ión/Abu	ndancia
	rorma	-	~		
	4.117.254	Bmm	BP-Q	BQ	Btc
PINOPHYTA					
CUPRESSACEAE					
Juniperus deppeana Steud. Torres Z. 16, 42, 87 PINACEAE	Ar	1	3		
Pinus leiophylla Schlecht. & Cham.	Ar		3		
Torres Z. 173	Ar	1	3		
Pinus montezumae Lamb. Torres Z. 107, 108, 303	Ar	1	3		
Pinus teocote Schlecht. & Cham. Torres Z. 106	Ar	1	2		
Pinus pringlei Shaw	Ar	2			
Torres Z. 98, 109					
Pinus pseudostrobus Lindl.	Ar	1	3		
Torres Z. 105					
MAGNOLIOPHYTA ACANTHACEAE					
Anisacanthus quadrifidus (Vahl) Standl. Torres Z. 114,380, Flores 79	Ato		1		
Dyschoriste decumbens (Gray) Kuntze Torres Z. 612	Hc			2	
Dyschoriste ovata (Cav.) Kuntze	Hc		1		
Torres Z. 410					
Ruellia bourgaei Hemsl. Torres Z. s/r	Hc				
Ruellia discolor Nees Torres Z. 756	Ato			2	
AGAVACEAE					
Agave attenuata Salm-Dyck Tejero s/r	С	1			
Agave horrida Lem. Ex Jacobi Tejero s/r	С	1	Denti		
ALISMATACEAE					
Sagittaria guyanensis Kunth ssp. Guyanensis Torres Z. 737	Ну	2			
AMARANTHACEAE					
Amaranthus hibridus L. Torres Z. 846	Т				
Gomphrena decumbens Jacq. Torres Z. 888	С		2	2	

	Forma	Tipos d	le vegetac	ión/Abu	ndancia
		Bmm	BP-Q	BQ	Btc
Gomphrena nitida Roth	С		1		
Torres Z. 261	TO A F		,		
Iresine celosia L.	T/Hc		1		
Torres Z. 482					
ANNONACEAE					_
Annona cherimola Mill. Torres Z. 776	Ar				2
Annona diversifolia Safford Torres Z. 796	Ar				3
APIACEAE					
Apium leptophyllum (Pers.) F. Muell. Torres Z. 746	T		1		
Arracacia atropurpurea (Lehm.) Benth. & Hook. Torres Z. 528, 553	Нс				3
Arracacia tolucensis (H.B.K.) Hemsl. Torres Z. 403	Hc				3
Berula erecta (Huds.) Coville	Hy		2		
Torres Z. 275, 909	,		-		
Eryngium sp.	Hc				
Torres Z. s/n	110				
Hydrocotyle ranunculoides L. f.	Hy	2			
Torres Z. 426,428	117	_			
Micropleura renifolia Lagasca	С		2		2
Torres Z. 126, 404	0		4		4
APOCYNACEAE					
Thevetia thevetioides (H.B.K.) Schum.	Ato/Ar		1		
Torres Z. 856	Ato/Ai		1		
AQUIFOLIACEAE					
Ilex tolucana Hemsl.	Ar/Ato	3			
Torres Z. 845	AI/AIU	3			
ARACEAE	G	1	1		
Arisaema macrospathum Benth.	G	1	1		
Torres Z. 385, García 85, Aguilar 185					
ARALIACEAE		0	,		
Dendropanax arboreus (L.) Dene. & Planch. Torres Z. 571	Ar	3	1		
Oreopanax peltatus Linden ex Regel Torres Z. 489	Аг	3			
Oreopanax xalapensis (H.B.K.) Dene. & Planch. Torres Z. 566 ASCLEPIADACEAE	Аг	1			3
ASCLEFIADACEAE Asclepias angustifolia Schweig. Torres Z. 147	С		1		

	Forma	Tipos de vegetación/Abundancia			
		Bmm	BP-Q	BQ	Btc
Asclepias curassavica L.	С		1		
Torres Z. 181, 408	C		1		
Asclepias linaria Cav.	С		1		
Torres Z. 422	O		•		
Asclepias mexicana Cav. Torres Z. 365	Нс	3			
Asclepias ovata Mart. & Gal. Torres Z. 247,579,810	G			1	
Gonolobus uniflorus H.B.K. Torres Z. 562	L				3
Matelea quirosii (Standl.) Woodson Torres Z. 832 ASTERACEAE	C/L				3
Acourtia alamanii (DC.) Reveal & King Torres Z. 655	Hc		1		
Ageratum corymbosum Zuc. Tejero s/r	Hc	1			
Archibaccharis hieraciifolia Heering Torres Z. 901	Hc		1		
Aster moranensis H.B.K. Tejero s/r	Нс				
1ster potosinus Gray	С		1		
Torres Z. 643					
Baccharis conferta H.B.K. Torrez Z. 893	Ato		2		
Baccharis heterophylla H.B.K. Torres Z. 642, 700, Olivares 102	С	1	3		
Baccharis salicifolia (Ruiz & Pavón) Pers. Torres Z. 332	Ato		1		
Baltimora geminata (Brandg.) Stuessy Torres Z. 656	С	2			
didens anthemoides (DC.) Scherff Torres Z. 644	Hc	1			
Bidens aurea (Ait.) Scherff Torres Z. 645	Hc	2			
didens odorata Cav. Torres Z. 646	T	1			
didens ostruthioides (DC.) Sch. Bip. Torres Z. 897	Hc/C	1			
Trisium sp Tejero s/r	Hc		1		
Conyza canadensis (L.) Cronq. Torres Z. 657	T	1			

	Forma	Tipos o	le vegetac	:ión/Abu	ndancia
	<u></u>	Bmm	BP-Q	BQ	Btc
Conyza coronopifolia H.B.K.	Т		3		
Torres Z. 364, Olivares 136					
Dahlia coccinea Cav.	G	3	3	2	
Torres Z. 324, 527, 716					
Desmanthodium fruticosum Greenm.	С		1		
Torres Z. 344					
Erigeron karvinskianus DC.	C		2		
Torres Z. 648					
Erigeron pubescens H.B.K.	C/Hc	1	3		
Torres Z. 98, 647					
Eupatorium petiolare Mociño ex DC.	Ato			2	
Torres Z. 649					
Gnaphalium schraderi DC.	T/Hc		1		
Torres Z. 611					
Guardiola mexicana H. & B.	Hc	2			
Torres Z. 658					
Hieracium sp.	Hc	1			
Torres Z. 875					
Iosthephane heterophylla (Cav.) Benth.	Hc	3			
Torres Z. 659					
Lagascea angustifolia DC.	C/Hc	2			
Torres Z. 702					
Melampodium perfoliatum (Cav.) H.B.K.	T		3		
Torres Z. 307, 641, Márquez 67,					
Olivares 53					
Melampodium repens Sessé & Moc.	T	1			
Torres Z. 393					
Montanoa leucantha (Lag.) Blake	Ato				
Torres Z. 834					
Perymenium buphthalmoides DC.	Hc		1		
Torres Z. 851			-		
Piqueria pilosa H.B.K.	C/Hc	2			
Torres Z. 703		_			
Rumfordia floribunda DC.	Ato	3			
Torres Z. 1004		-			
Senecio andrieuxii DC.	Ato	2			
Torres Z. 900,904		_			
Senecio barba-johannis DC.	С		1		
Torres Z. 174	~		*		
Spilanthes alba L'Hér.	Т	1			
Torres Z. 713	4				
Spilanthes oppositifolia (Lamb.) D' Arcy	Hc/G			1	
Torres Z. 894	1100			•	
1011C3 L. 034					

	Forma	Tipos d	le vegetac	ión/Abu	idancia	
		Bmm	BP-Q	BQ	Btc	
Stevia alatipes B. L. Robins. Torres Z. 717	Т	3				
Stevia elatior H.B.K.	Hc		3			
Torres Z. 819, 916			_			
Stevia hirsuta DC.	Hc	3				
Torres Z. 715	-	•				
Tagetes filifolia Lag.	T					
Torres Z. 879						
Tagetes lucida Cav.	Hс					
Torres Z. 889						
Taraxacum officinale Wiggers Torres Z. 866	Hc		1			
Tridax coronopifolia (H.B.K.) Hemsl. Torres Z. 871	T					
Tithonia tubaeformis (Jacq.) Cass. Torres Z. 720	T			2		
Verbesina angustifolia (Benth.) Blake	Ato			3		
Torres Z. 721	110					
Vernonia alamanii DC.	Ato		1			
Torres Z. 891			-			
Wedelia hispida H.B.K.	Ar/Ato			3		
Torres Z. 719	,			Ť		
Zexmenia aurea (D. Don) Benth. & Hook. Torres Z. 821	С	1				
BEGONIACEAE						
Begonia cristobalensis Ziesenh. Torres Z. 501	G		2			
Begonia gracilis H.B.K. Torres Z. 299.	G		2		4	
Begonia hintoniana J. Smith & Schubert Torres Z. 226	G			3		
Begonia ornithocarpa Standley Torres Z. 833	G				3	
BETULACEAE						
Alnus acuminata var. arguta Furlow	Ar	2	2			
Torres Z. 429. González 89 Tejero 230	8					
Alnus jorullensis H.B.K. var. jorullensis Torres Z. 537	Ar		3			
Carpinus caroliniana Walt.	Ar		3			
Tejero 2308						
Ostrya virginiana (Miller) K. Koch Torres Z. 502	Αг	3	3			

Apendice 1, continua	Forma	Tipos d	Tipos de vegetación/ Abundancia				
	TOTTIA	Bmm	BP-Q		Btc		
		DIIIII	BI-Q	BQ	ыс		
BIGNONIACEAE							
Crescentia alata H.B.K.	Ato/Ar				1		
Torres Z. 740	•						
Tecoma stans (L.) H.B.K.	Ato	2			4		
Torres Z. 500, 752							
BORAGINACEAE							
Lithospermun distichum Ort.	Hc		2				
Torres Z. 71							
Lithospermun oblongifolium Greenm.	Hc			2			
Torres Z. 281							
Macromeria pringlei Greenm.	C				3		
Torres Z. 580							
Tournefortia glabra L	Ato		2				
Torres Z. 166							
BRASSICACEAE							
Cardamine gambelli S. Watson	Нc	1					
Torres Z. 836							
Cardamine obliqua Hochstetter	C	1					
Torres Z. 709							
Eruca sativa Mill.	T		1				
Torres Z. 620							
BROMELIACEAE							
Tillandsia andreuxii (Mez) L. B. Smith	Ef			2			
Huidobro 267							
Tillandsia bourgaei Baker	Ef	2					
Torres Z. 748							
Tillandsia chaetophylla Mez	Ef			l	1		
Huidobro 181							
Tillandsia dasyliriifolia Baker	Ef				2		
Torres Z. 598 Huidobro 226							
Tillandsia dugesii Baker	Ef			1			
Huidobro 232 (IZTA)							
Tillandsia erubescens Schlecht.	Ef	3					
Torres Z. 603							
Tillandsia fasciculata Sw.	Ef	3					
Torres Z. 815							
Tillandsia hintoniana L. B. Smith	Ef						
Torres Z. 602							
Tillandsia ignesiae Mez	Ef	I		1			
Huidobro 213							
Tillandsia intumescens L. B. Smith	Ef				3		
Torres Z. 577							

	Forma	Tipos d	le vegetac	ión/ Abu	/ Abundancia		
		Bmm	BP-Q	BQ	Btc		
Tillandsia juncea (Ruiz & Pavón) Poiret	Ef	3	3				
Torres Z. 569, 733, Huidobro 224	Li	3	3				
Tillandsia prodigiosa (Lemaire) Baker	Ef	3					
Torres Z. 460	_						
Tillandsia thyrsigera E. Morren ex Baker	Ef				1		
Huidobro 222							
Tillandsia usneoides L.	Ef	1			1		
Huidobro 229							
BUDDLEJACEAE							
Buddleja cordata H.B.K.	Ar/Ato		3				
Torres Z. 447, 533							
Buddleja parviflora H.B.K.	Ato		3				
Torres Z. 101,							
Buddleja sessilifloта Н.В.К.	Ato	2					
Torres Z. 523							
BURSERACEAE							
Bursera bipinnata (Sessé & Moc.) Engl.	Ar				1		
Torres Z.596					_		
Bursera fagaroides (H.B.K.) Engl. Torres Z. 585	Ar				1		
Bursera longipes (Rose) Standley	Ar		3				
Torres Z. 773							
CACTACEAE							
Heliocereus speciosus (Cav.) Brit. & Rose Torres Z. 792	Ef/C				3		
Hylocereus undatus (Haw.) Brit. & Rose	Ep/C		3				
Torres Z. 837	Ep/ O		5				
Nyctocerus serpentinus (Lag. & Rodr.) Brit. & F	Rose C		3				
Torres Z.							
Opuntia sp.	С	1					
Torres Z. 187							
CAESALPINIACEAE							
Caesalpinia coriaria (Jacq.) Willd.	С		3				
Torres Z. 747							
Cassia hintonii Sandw.	С		1				
Torres Z. 734							
Senna multiglandulosa (Jacq.) Irwin & Barne	by Ato				2		
Torres Z. 714	by Ato				3		
Senna septemtrionalis (Viviani) Irwin & Barne Torres Z. 542	by Ato				J		
CAMPANULACEAE	Hc		3				
Lobelia gruina Cav.	110		5				
Torres Z. 902							

	Forma Tipos de vegetación/Abundancia				
		Bmm	BP-Q	BQ	Btc
Lobelia laxiflora H.B.K.	Нc		2		
Torres Z. 774			_		
Lobelia schmitzii E. Wimm.	Hc		2		
Torres Z. 905					
CAPRIFOLIACEAE					
Sambucus mexicana C. Presl	Ato	3			
Torres Z. 811					
Symphoricarpos microphyllus H.B.K.	С		3		
CARYOPHYLLACEAE					
Cerastium nutans Raf.	Нc		3		
Torres Z. 337					
Drymaria cordata (L.) Willd.	Hc		3		
Torres Z. 312					
CELASTRACEAE					
Celastrus pringlei Rose	Ato				3
Torres Z. 582, 722					
CISTACEAE					
Helianthemum glomeratum Lag.	C/Ato	2	2		
Torres Z. 491					
CLETHRACEAE					
Clethra pringlei S. Watson	Аг	2	2		
Torres Z. 159, 190					
Clethra mexicana A. DC.	Аг	2	3		
Torres Z. 160, Tejero 2310					
CLUSIACEAE					
Clusia salvinii D. Don	Аг	3			1
Torres Z. 574					
Hypericum silenoides Juss.	T	1			
Torres Z. 735					
COMMELINACEAE					
Callisia insignis Clarke	G		1		
Torres Z. 294, Olivares 190					
Commelina difussa Burm. f.	G		1		
Torres Z. 201, 335					
Commelina orchioides Booth ex Lindl.	G			1	
Torres Z. 319, 347, Sánchez 53.					
Gibasis holosericea (Kunth) Raf.	G				
Torres Z. 775	_				
Gibasis pulchella (H.B.K.) Raf.	G		1		
Torres Z. 338, 360	_				
Tradescantia llamasii Matuda	T			3	
Torres Z. 317, Olivares 93	_				
Tradescantia standleyi Steyermark	T			1	
Torres Z. 814					

	Forma	Tipos d	ndancia		
		Bmm	BP-Q	BQ	Btc
Tripogandra disgrega (Kunth) Woodson Torres Z. 308	G		3		
Tripogandra elongata (G.F.W. Mey) Woodson Torres Z. 138, Olivares 98 CONVOLVULACEAE	n G		2		
Bonamia sulphurea (Brandegee) Myint & Ward Torres Z. 786	l C				1
Dichondra sericea Sw. Torres Z. 895	С		1		
Evolvulus alsinoides L. Torres Z. 888	Hc		1		
Ipomoea capillacea G. Don Torres Z. 323	T	l			
Ipomoea coccinea L. Torres Z. 328	T	1			
Ipomoea murucoides Roem. & Schult. Torres Z. 767	Ar		1		
Quamoclit gracilis Hallier Torres Z. 239 CORNACEAE	T				
Cornus disciflora Sessé & Mociño ex DC. Torres Z. 175, 474, 486	Ar	3	3		
Cornus excelsa H.B.K. Torres Z. 538 CRASSULACEAE	Ar				3
Echeveria gibbifora DC. Torres Z. 498	С	1			
Echeveria secunda Booth Torres Z. 708	С	I			
Sedum minimum Rose Torres Z. 310, Martínez 67, Olvera 89	С	3			3
Villadia batesii (Hemsl.) Baehni & Macbr. Torres Z. 313	С	3			
Villadia parviflora (Hemsl.) Rose Torres Z. 454 CUCURBITACEAE	Hc	1			
Ahzolia composita (DonnSm.) Standley & Steyerin. Torres Z. 309	С				1
Cyclanthera langaei Cogn. Torres Z. 588 CUSCUTACEAE	T				3
Cuscuta corymbosa Ruiz & Pavón Torres Z. 724	Pa			3	

Aperate 1, continua	Forma	Tipos d	le vegetac	ión/Abu	ndancia	_
		Bmm	BP-Q	BQ	Btc	
CYPERACEAE						
Bulbostylis juncoides (Vahl) Kükenth.	Ну		1			
Torres Z. 835			,			
Carex polystachya Sw. Torres Z. s/r	Hc		1			
Cyperus aggregatus (Willd.) Endl. Torres Z. 225, 501	Hc	1				
Cyperus manimae H.B.K. Torres Z. 563	Hc		1			
Cyperus hermaphroditus (Jacq.) Standley Torres Z. 552	G		3			
Cyperus seslerioides H.B.K. Torres Z. 97, 305, 421	Hc		1			
Cyperus spectabilis Link Torres Z. 557	Hc		1			
Eleocharis acicularis (L.) Roem. & Schult. Torres Z. 576 DIOSCOREACEAE	Hy/G	3				
Dioscorea galeottiana Kunth Torres Z. 820	С		3			
Dioscorea remotiflora Kunth Torres Z. 841, Tejero 2519 ERICACEAE	G				3	
Arbutus spinulosa Mart. & Gal. Torres Z. 478	Ar	3	3			
Arbutus xalapensis H.B.K. Torres Z. 184, 440	Ar		3			
Arctostaphylos discolor (Hook.) DC. Torres Z. 478, 536	Ato	3	3			
Gaultheria lancifolia Small Torres Z. 395, 396, 567, 710	Ar	1		3		
Leucothoe mexicana (Hemsl.) Small Torres Z. 160, Tejero 2316	Ar		3			
Vaccinium leucanthum Cham. & Schlecht. Tejero 2307	Ato		2			
EUPHORBIACEAE						
Acalypha phleoides Cav. Torres Z. 770	С		3			
Croton sp. Torres Z. 555	Ato				1	
Euphorbia prestlei Guss. Torres Z. 838	T				2	
Euphorbia subreniforme Wats. Torres Z. 768	Ato				_	

	Forma	Tipos d	le vegetac	ión/ Abı	ındancia
		Bmm	BP-Q	BQ	Btc
FABACEAE					
Amicia zygomeris DC.	Hc		2		
Torres Z. 112	•••		_		
Astragalus guatemalensis Hemsl.	Т		3		3
Torres Z. 241, 387	_				
Astragalus nuttallianus var.austrinus Small	Hc				3
Barneby, Torres Z. 711					
Cologania grandiflora Rose	Hc		3		
Torres Z. 411			•		
Crotalaria longirostrata Hook. & Arn.	С				3
Torres Z. 586	•				Ü
Crotalaria rotundifolia var. vulgaris Windler	Нс		2		
Torres Z. 389			_		
Crotalaria sagittalis L.	T				3
Torres Z. 710	_				
Dalea cliffortiana Willd.	Hc				3
Torres Z. 181					Ü
Dalea leucostachys A. Gray	Ar		3		
Torres Z. 398	2				
Dalea sericea Lag.	Hc		3		3
Torres Z. 716			9		9
Dalea zimapanica Schauer	Ato		3		
Torres Z. 170	1110		3		
Desmodium densiflorum Helms.	Нc		3		
Torres Z. 350bis	110				
Desmodium grahamii A. Gray	Hc/C		3		
Torres Z. 712	110,0		0		
Desmodium sp.	L				3
Torres Z. 607					J
Eriosema grandiflorum (Schlecht. & Cham.)	Ato				3
G. Don Torres Z. 589	1110				3
Crythrina lanata Rose	Ar				3
Torres Z. 540	111				J
Eysenhardtia polystachya (Ort.) Sarg.	Ar				2
Torres Z. 394	111				-
otus repens (G. Don) Standl. & Steyerm.	Hc		1		
Torres Z. 412, Correa 20	110		•		
upinus hintonii C. P. Smith	С	1			
Torres Z. 861	J	1			
	Нc	1			
upinus sp Torres 7 - 840	110	1			
Torres Z. 849	т.				
Aedicago lupulina L.	Т				

Apendice 1, continua	Forma	Tipos de vegetación/Abundano				
		Bmm	BP-Q	BQ	Btc	
Pachyrhizus erosus (L.) Urb.	G				3	
Torres Z. 608						
Phaseolus coccineus L.	Hc			3		
Torres Z. 322						
Phaseolus leptostachyus Benth. Torres Z. 252	Hc				3	
Phaseolus pedicellatus Benth.	Hc				3	
Torres Z. 475	C		1			
Phaseolus vulgaris L.	C		1			
Torres Z. 164			0			
Tephrosia sp.	С		3			
Torres Z. 443	He				9	
Trifolium goniocarpum Lojac. Torres Z. 535	Hc				3	
Trifolium repens L.	Hc		1			
Torres Z. 112						
Trifolium sp.	Hc		2			
Torres Z. 467						
FAGACEAE						
Quercus affinis Scheidw. Torres Z. 471	Ar	3	3			
	Ar	3	3			
Quercus castanea Née	Ai	3	3			
Torres Z. 302	4 -		2		1	
Quercus centralis Trel.	Аг		Z		1	
Torres Z. 251, 529 y Romero	A		o			
Quercus conglomerata Trel.	Ar		3			
Torres Z. 190						
Quercus crassifolia H. & B.	Ar		3	4		
Torres Z. 1000		0	0	0	,	
Quercus glaucoides Mart. & Gal.	Аг	2	3	2	1	
Torres Z. 384, 388 y Romero	4	0				
Quercus laurina H. & B.	Ar	2	2			
Torres Z. 356 y Romero						
Quercus magnoliifolia Née	Аг			4		
Torres Z. 110, 146 y Romero						
Quercus obtusata H. & B.	Ar			3		
Torres Z. 195						
Quercus platyphylla Warb.	Аг	2	2			
Torres Z. 194						
Quercus scytophylla Liebm.	Ar	4	3			
Torres Z. 575			_			
Quercus urbanii Trel.	Ar		2	4		
Torres Z. 197 y Romero						

	Forma	Tipos d	s de vegetación/Abundano		
		Bmm	BP-Q	BQ	Btc
FLACOURTIACEAE					
Xylosma flexuosum (H.B.K.) Hemsley	Ar		2		
Tejero 2314 y Torres Z.					
Xylosma intermedium (Seemann) Triana &	Ar	1			
Planchon Torres Z. 468					
GARRYACEAE					
Garrya laurifolia Hartw.	Ar	2			
Torres Z. 906					
GERANIACEAE					
Geranium lilacinum (L.) Kunth.	Hc	3	2	3	
Torres Z. 191, 209, 234, Echegaray 23	,				
Vargas 34					
Geranium potentillifolium DC.	Hc	2			
Torres Z. 329					
Geranium seemannii Peyr.	Hc	2			
Torres Z. 623					
GENTIANACEAE					
Gentiana bicuspidata (G. Don) Brig.	Hc		2		
Torres Z. 214					
Gentiana spathacea H.B.K.	Hc		2		
Torres Z. 822					
Gentianella amarella (L.) Börner	Hc	2			
Torres Z. 622					
GESNERIACEAE					
Achimenes antirrhina (DC.) Morton	Hc	1			
Torres Z. 333					
GROSSULARIACEAE					
Phyllonoma laticuspis (Turcz.) Engler	Ar/Ato		1		
Torres Z. 464, 816, Tejero 2306					
HYDROPYLLACEAE					
Phacelia heterophylla Pursh	C	2			
Torres Z. 624					
Wigandia urens (Ruíz & Pavón) H.B.K.	Ato	3			
Torres Z. 892					
IRIDACEAE					
Nemastylis caerulescens Greenm.	G				l
Torres Z. 270					
Nemastylis triflora Herb.	G	1			
Torres Z. 625	_				
Sisyrinchium schaffneri Wats.	G				l
Tejero s/r	_		_		
Tigridia alpestris Molseed	G		2		
Torres Z. 80					

	Forma	Tipos o	le vegetac	ión/Abu	ndancia
		Bmm	BP-Q	BQ	Btc
Tigridia multiflora (Baker) Ravenna Torres Z. 249	G				1
Tigridia pavonia (L.f.) DC. Torres Z. 320 LAMIACEAE	G		2		
Cunila lythrifolia Benth. Torres Z. 416, 446	Ato		3		
Cunila pycnantha Rob. & Greenm. Torres Z. 630	Hc	l			
Hyptis americana (Aubl.) Urban Torres Z. 101	Hc	l			
Leonotis nepetifolia (L.) R. Brown Tejero s/r	Hc		1		
Lepechinia caulescens (Ort.) Epl. Torres Z. 824	Hc		3		
Lepechinia nelsonii (Fern.) Epl. Tejero s/r	Hc		1		
Prunella vulgaris L. Torres Z. 98, 619	С	1	1		
Salvia albocaerulens Lindl. Torres Z. 150	С	3			
Salvia dichlancys Epl. Torres Z. 139, 213, 267	С	1			2
Salvia elegans Vahl Torres Z. 350, 351, 428	С	2	3		
Salvia excelsa Benth. Torres Z. 390	Hc	2			
Salvia fulgens Cav. Torres Z. 139, 152	Ato		2		
Salvia glechomifolia H.B.K. Torres Z.152	С		2		
Salvia helianthemifolia Benth. Torres Z. 903	Ato	2			
Salvia iodantha Fernald Torres Z. 165	Hc	3			
Salvia mexicana L. Torres Z. 177	С		1		
Salvia prunelloides H.B.K. Torres Z. 390	Hc	1			
Salvia pulchella DC. Torres Z. 223	С	1			
Salvia purpurea Cav. Tejero s/r	Нс		l		

	Forma	Tipos d	e vegeta	vegetación/Abundai	ndancia
200 200		Bmm	BP-Q	BQ	Btc
Salvia sessei Benth.	Ato	1			
Torres Z. 428, 757					
Scutellaria caerulea Sessé & Moc.	Hc	2	1		2
Torres Z. 506, 617, 817					
Stachys agraria Cham. & Schlecht.	Hc				2
Torres Z. 618					
Stachys coccinea Jacq.	Hc		1		
Torres Z. 167, 177, 621					
LAURACEAE					
Persea hintonii Allen	Ato	3			
Torres Z. 631					
LENTIBULARIACEAE					
Pinguicula acuminata Benth.	C	3	3		
Torres Z. 105, 296, 626					
LILIACEAE					
Bomarea hirtella (H.B.K.) Herb.	G				1
Torres Z. 433, 568, 856 Tejero 2502					
Echeandia durangensis (Greenm.) Cruden	G		1		
Torres Z. 346, 448					
Tymenocallis harrisiana Herb.	G/Hy				1
Torres Z. 212, 581	,				
Typoxis decumbens L.	G		3		
Torres Z. 135 3, 1272,409					
Hypoxis mexicana Schult.	G		3		
Torres Z. 409					
Manfreda sp.	G	1			
Torres Z. 321					
Nothoscordum bivalve (L.) Britt.	G		2		
Torres Z. 825					
milacina flexuosa Bertol.	G	1			
Tejero y López 40					
milacina paniculata Mart. & Gal.	G		2		
Torres Z. 842, Tejero 2501					
prekelia formosissima (L.) Herb.	G			2	
Torres Z. 531					
ligadenus densus (Desr.) Fern.	G	2			
Tejero 2504					
INACEAE					
inum orizabae Planch.	Ato	2			
Torres Z. 632		10-11-1			
ORANTHACEAE					
Cladocolea loniceroides (Van Tieghem) Kuijt	Pa	3			
()		-			

Forma	Tipos de vegetación/Abundancia				na Tipos de vegetaci	ndancia
	Bmm	BP-Q	ВQ	Btc		
Pa				1		
Pa				1		
C		2				
		_				
Hc	3	3				
	Ŭ	Ū				
Т		2				
-		-				
Т	2	3				
_	_	-				
С		2				
		-				
С		2				
				2		
Ato						
T						
			1			
Hc						
Ato		2				
С			2			
Ar	3					
Ato	3	3				
Hc				3		
Ar				2		
Ato				3		
Ato				3		
	Pa C Hc T T C C Ato T Hc Ato C Ar Ato Hc Ar Ato	Pa Pa C Hc 3 T 2 C C Ato T Hc Ato C Ar 3 Ato 3 Hc Ar Ato	Bmm BP-Q Pa 2 C 2 Hc 3 3 T 2 3 C 2 3 C 2 2 Ato 2 2 Ato 2 2 Ato 2 2 Ar 3 3 Hc 3 3 Hc 4 4 Ato 3 3 Ato 3 3 Ato 4 4 Ato 4 4 <	Bmm BP-Q BQ Pa 2 C 2 Hc 3 3 T 2 3 C 2 4 Ato 2 4 Ato 2 2 Ato 2 2 Ar 3 3 Ato 3 3 Hc 4 4 Ar 4 4 Ato 4 4 Ar 4 4 Ato 4 4		

	Forma	Tipos de vegetación/Abundar			
		Bmm	BP-Q	BQ	Btc
Leucaena esculenta (DC.) Benth. Torres Z. 745	Ar				4
Leucaena leucocephala (Lam.) de Wit Torres Z. 741	Ato/Ar				
Lysiloma microphyllum Benth. Torres Z. 867	Ato/Ar		1	4	
Mimosa aculeaticarpa Ort. Torres Z. 413	Ato		3		
Mimosa pudica L. Torres Z. 862 MORACEAE	С				
Ficus sp. Tejero s/r MYRTACEAE	Ar				1
Psidium sartorianum (O. Berg) Nied. Torres Z. 256 MYRSINACEAE	Ar/Ato				3
Rapanea juergensenii Mez Torres Z. 905 NYCTAGINACEAE	Аг		2		
Mirabilis jalapa L. Torres Z. 504, 806 OLEACEAE	Hc/C			2	
Fraxinus uhdei (Wenzig) Lingelsh. Torres Z. 741 ONAGRACEAE	Ar	1			
Fuchsia microphylla H.B.K. Torres Z. 902	Ato	3			
Fuchsia arborescens Sims Torres Z. 877	Ar/Ato	1			
Gaura coccinea Pursh Torres Z. 513	Hc	2			
Lopezia racemosa Cav. Torres Z. 728	T	1			
Oenothera rosea L' Hér. ex Ait. Torres Z. 513, 727, 1000 ORCHIDACEAE	Hc	3			2
Bletia gracilis Lodd. Torres Z. 1002, Tejero 2521	G	2			
Bletia macristhmochila Greenm. Torres Z. 86	G	3			
Bletia reflexa Lindl. Torres Z. 91,351,425	G	3			

	Forma	Tipos de vegetación/Abundancia				
		Bmm	BP-Q	BQ	Btc	
Cymbiglossum cervantesii (Lex.) F. Halbin Torres Z. 466	ger Ef				2	
Encyclia adenocaula (Lex.) Schltr.	Ef		2			
Torres Z. 166						
Encyclia concolor (Lex.) Schltr. Torres Z. 186	Ef	3				
Epidendrum anisatum Lex. Torres Z. 850	Ef	3				
Goodyera striata Reichb. f. Torres Z. 749	G	1				
Habenaria novemfida Lindl. Torres Z. 237	G		1			
Isochilus amparoanus Schltr. Torres Z. 573	Ef				2	
Jacquinella cernua (Lindl.) Dressler Torres Z. 738	Ef	2				
Malaxis corymbosa (Wats.) Kuntze Torres Z. 597	G				3	
Malaxis fastigiata (Reichb.f.) Kuntze Torres Z. 803	G	2			2	
Oncidium karwinskii (Lindl.) Lindl. Torres Z. 465	Ef	1				
Osmoglossum dubium Rosillo Torres Z. 285	G				2	
Pleuτothallis hirsuta Ames Torres Z. 283, 560 ΟΧΑLIDACEAE	Ef		3			
Oxalis corniculata L. Torres Z. 243	Нс				1	
Oxalis hernandesii DC. Oropeza 27, Echegaray 28, Bañuelos 5	G 27		2			
Oxalis tetraphylla Cav. Torres Z. 78, 101, 130, 131, 203, 292 PAPAVERACEAE	G	3	3			
Argemone ochroleuca Sweet Torres Z. 898	T	1				
Bocconia arborea S. Wats. Torres Z. 487 PASSIFLORACEAE	Ato/Ar		2			
Passiflora exsudans Zucc. Aguirre 291	Hc/C	2				
Passiflora mollissima (H.B.K.) Bailey García 56	Hc	2				

	Forma	Tipos de vegetación/Abundancia			
		Bmm	BP-Q	BQ	Btc
Passiflora pavonis Mast. Torres Z. 289	C/Hc		2		
Passiflora suberosa L. Abundiz s/n	Нс	2			
PEDALIACEAE Proboscidea louisianica ssp. fragrans (Line Bretting. Torres Z. 609 PHYTOLACCACEAE	dl.) T				3
Phytolacca icosandra L. Torres Z. 137 PIPERACEAE	С	2			
Peperomia galioides H.B.K. Torres Z. 496,637	Ef	2	2		
Peperomia campylotropa A. W. Hill Torres Z. 558	G		2		
Piper amalago L. Tejero s/r PLANTAGINACEAE	Ato	1			
Plantago major L. Torres Z. 236, 291	Hc		3		
POACEAE Aristida appressa Vascy Torres Z. 244	Нс		2		
Bromus anomalus Rupr. ex Fourn. Torres Z. 823	Нс		2		
Bromus sp. Torres Z. 196	Hc	1	3		
Calamagrostis sp. Torres Z. 193	Hc		3		
Cynodon dactylon (L.) Pers. Torres Z. 325	Hc		3		
Digitaria filiformis (L.) Koeler Torres Z. 355	Hc		1		
Festuca amplissima Rupr. Torres Z. 278, 907	G		2		
Microchloa kunthii Desv. Torres Z. 326	Hc		3		
Muhlenbergia gigantea (Fourn.) Hitchc. Tejero s/r	Hc				
Muhlenbergia montana (Nutt.) Hitchc. Tejero s/r	Нс				
Panicum purpurascens Raddi Torres Z. 381	Hc		2		

acoatában décat rectojes attribuja i	Forma	Tipos de vegetación/Abundancia					
Bring DE DE Inve		Bmm	BP-Q	BQ	Btc		
Paspalum humboldtianum Flügge Torres Z. 344	Нс		1		on the same		
Pennisetum setosum (Sw.) Rich. Torres Z. 560	Hc		1				
Sporobolus macrospermus Scribn. ex Beal Torres Z. 255	Т		3				
Zeugites americana Willd. var. pringlei (Scribn.) McVaugh Torres Z. 327 POLEMONIACEAE	Нс		3				
Loeselia coerulea (Cav.) D. Don. Torres Z. 400	Нс		1				
Loeselia mexicana (Lamb.) Brand Torres Z. 743	Ato	1					
POLYGALACEAE							
Monnina ciliolata DC. Torres Z. 337	Ato	1					
Polygala subalata S. Wats. Torres Z. 826	Hc		1		Superport Kinasters in		
POLYGONACEAE							
Polygonum hydropiperoides Michx. Torres Z. 532	Hc		2				
Rumex crispus L.	Hc	1					
Torres Z. 896							
PRIMULACEAE							
Anagallis arvensis L.	T		2				
Torres Z. 358							
RANUNCULACEAE							
Clematis dioica L.	L						
Tejero s/r Ranunculus cymbalaria Pursh	Hc				3		
Torres Z. 812	110				3		
Ranunculus dichotomus Sessé & Moc. Torres Z. 556, 827.	Hc		2				
Ranunculus trichopyllus Chaix Torres Z. 191	Ну		2				
Thalictrum hernandezii Tausch Torres Z. 811	Ну			2			
Thalictrum gibbosum Lecoyer Torres Z. 907	Ну		2				
RESEDACEAE							
RESEDACEAE Reseda luteola L.	Т	3					

ı	Forma	Tipos de vegetación/Abundancia				
		Bmm	BP-Q	BQ	Btc	
RHAMNACEAE						
Ceanothus coeruleus Lag.	Ato	2				
Torres Z. 899						
Karwinskia humboldtiana (Roem. & Schult.) Zucc. Torres Z. 831	Ato				4	
ROSACEAE						
Prunus serotina Ehrh. Torres Z. 519, 515	Ar/Ato				3	
Rosa montezumae H. & B.	Ato	2	2			
Torres Z. 230, 483						
Rubus adenotrichus Schlecht. Torres Z. 192	Ato		3			
Rubus pringlei Rydb.	С		2			
Torres Z. 828	_					
RUBIACEAE						
Borreria verticillata (L.) C.A. Meyer	Hc		2			
Torres Z. 311						
Bouvardia chrysantha Mart.	C				2	
Torres Z. 100						
Bouvardia cordifolia DC.	С	2	2			
Torres Z. 113Bis, 200, 264						
Bouvardia loeseneriana Standley	С		2			
Torres Z. 117, 227						
Bouvardia longiflora (Cav.) H.B.K. Torres Z. 806	Ato				3	
Bouvardia standleyana Brackwell Torres Z. 101	С		2			
Bouvardia ternifolia (Cav.) Schlecht.	С	2	3			
Torres Z. 205, 333, 570, 791, Piedra 13		_				
Crusea coccinea DC.	С					
Tejero s/r						
Galium aschenbornii Schauer	Hc		2			
Torres Z. 550			-			
Galium trifidum L.	Hc		3			
Torres Z. 807						
Galium uncinulatum DC.	Hc		3			
Torres Z. 274	T.T		9			
Hedyotis cervantesii H.B.K.	Hc		3			
Torres Z. 267	C	9	0			
Rondeletia jurgensenii Helms	С	3	2			
Torres Z. 113Bis, 205, 264, 265 Spermacoce riparia Cham. & Schlecht.	Hc		2			

	Forma	Tipos d	ndancia		
		Bmm	BP-Q	BQ	Btc
SABIACEAE					
Meliosma dentata (Liebm.) Urban	Ar		3		
Torres Z. 557			_		
SALICACEAE					
Populus simaroa Rzedowski	Ar		3		
Rzedowski 30469 (ENCB)					
Salix hartwegii Bentb.	Ar		3		
Torres Z. 1003					
SAPINDACEAE					
Dodonaea viscosa (L.) Jacq.	Ato		2		
Torres Z. 114					
SCROPHULARIACEAE					
Calceolaria mexicana Benth.	T		2		
Torres Z. 148, 336					
Castilleja scorzonerifolia H.B.K.	Hc	2			
Torres Z. 145					
Castilleja tenuissora Benth.	Hc				3
Torres Z. 518					-
Castilleja sp.	Hc				1
Torres Z. 378					
Lamouroxia dasyantha (Cham. & Schlecht.) Erns	st Hc		2		
Torres Z. 829					
Lamouroxia multifida H.B.K.	Hc		2		
Torres Z. 704					
Mimulus glabratus H.B.K.	Нс		2		1
Torres Z. 315, 587, 654					
Penstemon campanulatus (Cav.) Willd.	Hc	2	3		
Torres Z. 457, 706, 908					
Russelia sarmentosa Jacq.	С		3		
Torres Z. 104, 228			•		
Sibthorpia repens (Mutis ex. L.f.) Kuntze	Hc				1
Torres Z. 514,640					_
Sibthorpia retusa H.B.K.	Т				1
Torres Z. 503	_				_
SMILACACEAE					
Smilax pringlei Greenm.	L		1		
Tejero 2503					
SOLANACEAE					
Cestrum anagyris Dunal	Ato	2			
Torres Z. 498		_			
Cestrum fulvescens Fern.	Ato	2			
Torres Z. 495 Cestrum sp.	Ato	1			
Torres Z. 154					

	Forma	Tipos de vegetación/Abundancia				
		Bmm	BP-Q	BQ	Btc	
Datura candida (Pers.) Safford Torres Z. 155	Ato	1				
Nicotiana glauca Graham Torres Z. 506	Ato				2	
Physalis mollis Nutt. Torres Z. 812	Hc		2			
Pysalis orizabae Dunal Torres Z. 705	Hc	3				
Pysalis sulphurea (Fern.) Waterfall Torres Z. 405	Нс	2				
Solandra nitida Zucc.	T		2			
Torres Z. 257 Solanum andrieuxii Dunal	Hc	3				
Vargas 37 Solanum cervantesii Lag.	Ato		2			
Torres Z. 370 Solanum demissum Lindl.	Т		3			
Torres Z. 225 Solanum fructu-tecto Cav.	Т	2				
Torres Z. 103 Solanum hispidum Pers.	Ato	3				
Torres Z. 186, 266, 366 Solanum jaltomata Schlecht. Torres Z. 813	Hg				2	
Solanum marginatum L. f.	Ar		2			
Torres Z. 442 Solanum rostratum Dunal	T		2		2	
Torres Z. 186, 236, 592 Solanum stoloniferum Schlecht. Torres Z. 430	T		2			
Solanum sp. Torres Z. 755	Т		l			
STERCULIACEAE Guazuma ulmifolia Lam. Torres Z. 429, 758	Ar				3	
STYRACACEAE Styrax argenteus var. ramirezii Greenm.	Ar	3	3		3	
Torres Z. 182, 199, 297, 469, 530 SYMPLOCACEAE						
Symplocos prionophylla Hemsl. Torres Z. y Tejero 2317	Ar	1				
THEACEAE Ternstroemia pringlei (Rose) Standley Torres Z. 163, 470, 474	Ar	3	2		1	

	Forma	forma Tipos de vegetación/Abundar					
		Bmm	BP-Q	BQ	Btc		
Cleyera mexicana Planch. Torres Z. 1004	Ar	3					
TILIACEAE							
Heliocarpus pallidus Rose Torres Z. 464	Ato	2					
Tilia houghii Rose Torres Z. 547, Tejero 2306	Ar		2				
Triumfetta coriacea Hochst. Torres Z. 405 VALERIANACEAE	Ato		2				
Valeriana clematitis H.B.K. Torres Z. 174	Ato		2				
Valeriana densiflora Benth. Torres Z. 293, 339 VERBENACEAE	Hc		2				
Lantana achyranthifolia Desf. Correa 25	Hc		3				
Lantana camara L. Torres Z. 121, 242, 279, 316	Ato	2	2		3		
Lippia umbellata Cav. Torres Z. 477	Ato	3					
Stachytarpheta hintonii Moldenke Torres Z. 94	С		2				
Verbena bipinnatifida Nutt. Torres Z. 707	Hc	3					
Verbena carolina L. Torres Z. 362, 449, 488, 541, Mureta 38	Hc	2	2		1		
Verbena litoralis H.B.K. Torres Z. 100, 816 VIOLACEAE	Hc	1					
Viola ciliata Schlecht. Torres Z. 160, 206, 320 VISCACEAE	Hc	3	3				
Phoradendron galeottii Trel. Torres Z. 636	Pa	3					
Phoradendron sp. Torres Z. 798 VITACEAE	Pa				1		
Vitis bourgaeana Planch.	L		3				
Torres Z. 116 Vitis tiliifolia H. & B. Torres Z. 481	L		3				